

des porcs bio

FARINELLI Améliorer le bien-être

Carcass characteristics and boar taint in entire male pigs from commercial French organic farms

Sarah Lombard (ITAB), Florence Maupertuis (CA PDL), Antoine Roinsard (FOREBIO), Armelle Prunier (INRAe)

Entire male pigs in organic production

In France, from the 1st of January 2022:

- Surgical castration without anesthesia is prohibited in male pigs
- Only surgical castration with anesthesia (local or general) and analgesia is allowed

In organic production which guaranties high welfare standards:

- More coherent to stop castration
- > Lack of references on entire male pigs in organic production
 - Importance to focus on organic pigs in research project

Main advantages and disadvantages to stop castration

Synthesis from studies on conventional farms:

- No more surgical intervention
- Better feed conversion
- Risk of harmful behaviour (mounts and aggressivity) \rightarrow farm management has to be adapted (von Borell et al., 2020)
- Better LMP (Lean Meat Percentage)
- Risk of boar taint (Parois et al., 2018) -> carcasses have to be identified and used accordingly
 - Need to specify certain aspects in the case of organic pig production (e.g. risk of boar taint)

Focus on boar taint

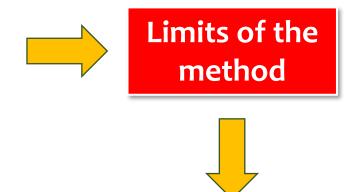
Boar taint is mainly due to two molecules:

	Androstenone	Skatole
Synthesis	Testes	Gut
Storage	Fat tissue	Fat tissue

(Zamaratskaia et Squires, 2009; Wesoly et Weiler, 2012; Robic et al., 2014; Wauters et al., 2016; Meinert et al., 2017)

- Almost all consumers are sensitive to skatole (MeierDinkel et al., 2013)
- Some people are not or little sensitive to androstenone (Font-i-Furnols, 2012)
- Products from boar-tainted meat have +/- risks to be rejected by consumers (Parois et al., 2018)
 - → Boar-tainted carcasses have to be identified on the slaughter chain

Focus on boar taint


Identification of boar-tainted carcasses in France: Human nose evaluation

2 steps:

- Heat the fat around the neck
- Smell and note

Farinelli method:

Note o	No boar-taint	
Note 1	Suspicious smell	
Note 2	Boar-tainted carcass	

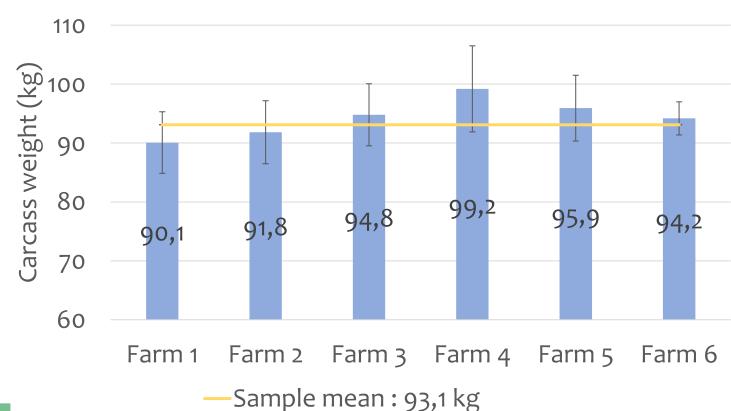
- → Subjectivity despite training of the operators
- →Some boar-tainted carcasses might not be identified on the chain

6 farms followed along one year

Aim of the study: evaluate the prevalence of boar-taint in pig organic farms with, *a* priori, low boar taint risk

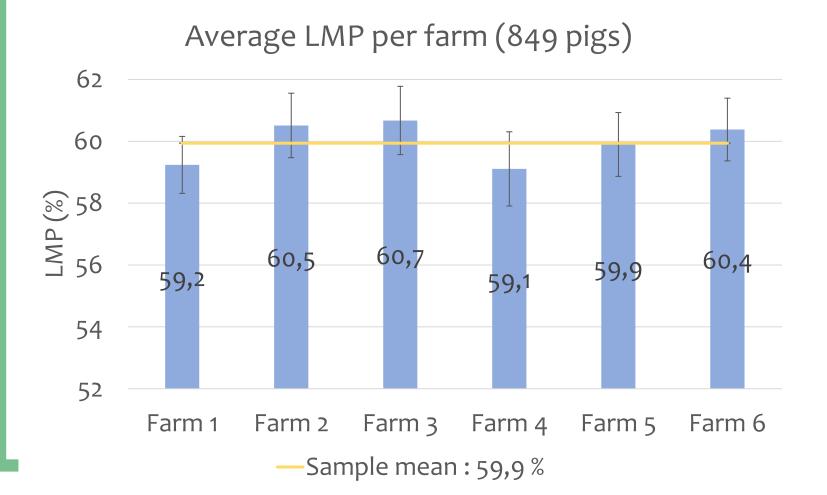
- → Farm management: straw quantity, age at slaughter
- → Data collection at the slaughterhouse :
 - Carcass weight
 - LMP
 - Human nose evaluation
 - Androstenone and skatole concentration in backfat

Number of pigs followed

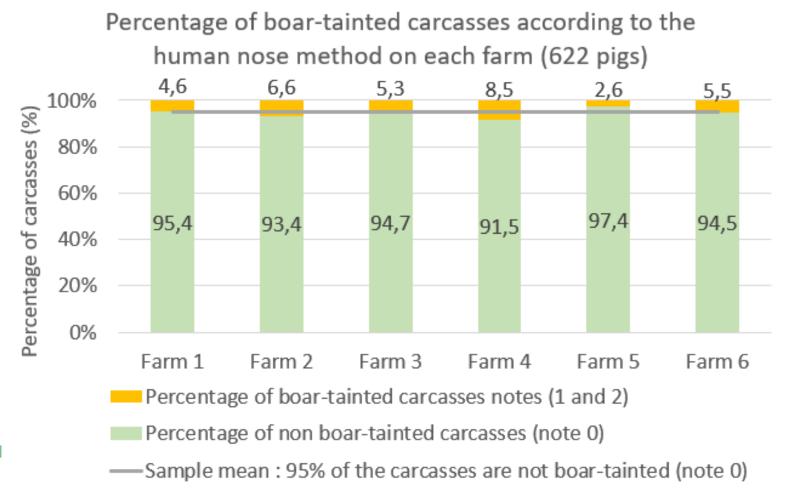

Farms	2021	2022	Total
Farm 1	174	62	236
Farm 2	182	76	258
Farm 3	76	0	76
Farm 4	20	59	79
Farm 5	77	49	126
Farm 6	55	19	74
Total	685	242	849

- → Farmers with good practices related to entire male pigs management
- →At least 3 batches / farm
- → All over the year

Carcass weight


Average carcass weight per farm (849 pigs)

- → Variability between farms: 90.1 ± 0.7 to 99.2 ± 1.6 kg (P<0.001)
- →84% pigs slaughtered before 210 days; variation between farms from 178 ± 1 to 209 ± 2 days (P<0.001)
- →In accordance with expectations of the organic pig sector


Lean Meat Percentage

- → Variability between farms: 59.2 ± 0.3 to 60.7 ± 0.3 (P < 0.001)
- →In accordance with expectations of the organic pig sector

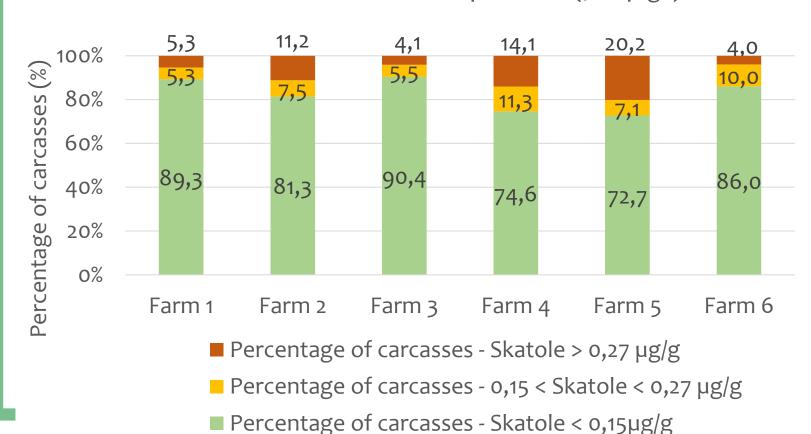
Results from the human nose method

- → On average: 95% of the pigs noted o and only 1,4% noted 2
- → Variability between farms and batches

Androstenone concentration in back fat

Androstenone concentration in backfat per farm (577 pigs)

- Percentage of carcasses Androstenone > 3µg/g
- Percentage of carcasses 1,7μg/g < Androstenone < 3 μg/g
- Percentage of carcasses Androstenone < 1,7 µg/g


→2 thresholds: 3,0 µg/g pure fat 1,7 µg/g pure fat

Potential sources of variability: carcass weight, age at slaughter

Skatole concentration in back fat

Skatole concentrations in backfat per farm (577 pigs)

- \rightarrow 2 thresholds: 0.27 µg/g pure fat 0.15 µg/g pure fat
- → High correlation between androstenone and skatole concentrations

Conclusions

- → Interesting technical results
- → Wide variation in the percentage of odorous carcasses between farms showing that low risk of tainted carcasses is achievable using optimal practices
- → Difficulties in identifying boar-tainted carcasses on a routine basis → important problem in organic farming (due to meat price)
- → More research is needed to determine how boar-tainted carcasses can be used (results in progress)

Thank you for your attention!

Any question?

Contact: sarah.lombard@itab.asso.fr